This is probably the most simple definition on this site but I think it’s very useful. The timer is a special component of Grasshopper that is significant in terms of the real-time sketching paradigm. This basic use of a timer includes a 1-second update to a Vb script. Inside the script, the system date’s seconds are returned, so we see a real-time increasing number at output A. Beyond this point, […]
The Truncated Icosahedron (5,6,6) is an Archimedean Solid we often recognize as the iconic soccer ball. This geometric structure, also affectionately known as the “Buckyball” in honor of the visionary architect Buckminster Fuller, has gained significant popularity and recognition both within the realms of mathematics and everyday life. It is composed of twelve regular pentagons and twenty regular hexagons, meticulously arranged to achieve a harmonious balance. This symmetrical nature makes […]
Here is an interesting six-year-old quote from Rivka Oxman, telling us about a potential class of designers. The particular character, type, class or whatever we call could be more sophisticated people than we imagine today. It tells me that, advances in design computing does make high-end techniques available for large communities, and re-define basics of architectural geometry for everyone in digital age, but always there seem to remain a small […]
Truncated hexagonal tessellation (or named 3-12-12) is represented in hyperbolic space (as far as I understood it). The idea is simple if you don’t mix it with complex equations. Below is the 2-dimensional representation of hyperbolic projection. Paper space is defined by the thick line there. Projection is based on a two-sheet hyperboloid surface. Euclidean version of this tessellation is described here. Here is the Grasshopper3D file containing the above […]
[GHX: 0.8.0066] This is my second attempt on getting into non-euclidean representations of space. Althouth it seems easy at first sight, this represents a close point of theory between mathematics and contemporary computational design geometry. As always, architects tend to use mathematical terms such as “non-euclidean geometries” but as far as I saw, most of them have no idea about what it is. So, I’m trying to learn and understand this […]
İstanbul Bilgi University Faculty of Architecture Basic Design II Spring 2012 undergraduate studio* group 6 includes both a geometric exploration and material research. They examined various formal alternatives, using wooden sticks and plastic tie-wrap connectors. After these experiments, they constructed a 1:1 material system spanning 4 meters in length and 2 meters in height, using 2.5km of wooden sticks and 18.000 tie wraps. This was an enormous effort to create […]
This is my first attempt at representing a non-euclidean space. There are several representations of a non-euclidean space in euclidean means such as Beltrami-Klein or Klein, Poincare, Poincare half-plane, and Weierstrass. Here, I tried to understand Poincare’s approach. Random straight lines are drawn on a hypothetical hyperbolic space using a simulation of Poincare’s famous disk representation. Although there is a precise description of the disk and its construction, I used a ready-made […]
İstanbul Bilgi University Faculty of Architecture Basic Design II Spring 2012 undergraduate studio* group 8’s project is a metal surface construction. Group of first year design students were capable of designing, modeling, fabricating and assembling the structure with a good precision. After physical prototypes of the proposed spanning structure, they further experimented in rhinoceros and sent faces to plasma cutting and bending process. Finally, they assembled the faces with nails […]
Below is the final project of group 3 at İstanbul Bilgi University Faculty of Architecture Basic Design II Spring 2012 undergraduate studio*. First photo shows students’ efforts on generating formal variations. They studied much on this folding components and attaching them together to create surfaces. Their final surface spans nearly 2.5 meters in height. Forex is used as main material and they nailed them from faces. The different sizes, shapes […]
Using SPM Vector Components developed by two talented people, Daniel Hambleton and Chris Walsh (website here), I’ve studied ways of displaying dynamic diagrams of form. I’ve modified an example file and found myself in a surprising formal exploration. It’s like watching the clouds, giving them meaning like a sheep, a flower, a baby… Here is a link to the Grasshopper file. Right-click and save it to your computer (don’t left-click it) [GHX: 0.8.0066: SPM […]
This is the final project of group 2 at İstanbul Bilgi University Faculty of Architecture Basic Design II Spring 2012 undergraduate studio*. 1:1 material system is constructed by two layers of tesselfations, triangular and hexagonal. They studied much for the connection detail and elaborated the structure to maintain stasis within a dynamic pose. They have used a Grasshopper definition (described here) to label and measure all of 800 rods into […]
I’ve worked a little more about the Solar Position definition I’ve started here. The definition uses Danel da Rocha’s beautiful solar position script and utilizes it with other components. It creates visual output for any given surface, divided into quads (with side faces of course) and coloring according to their orientation to the sun. This time (file here: [GHX: 0.8.0066]) I added an occlusion part to calculate the surface’s own shadow. Now, […]
I recently discovered Wordle, a visualization tool for websites. I’m very curious about the social network of design computing community. Trying to understand the trends, how the knowledge is spreading, and the role of different actors on this developing field of architectural design. First of all, I analyzed designcoding.net with all words within 103 posts until today (Click on the image for full size). Wordle can be visited by clicking here. […]
Here are several passages from Shamos’s dissertation thesis, where he is studying the history of geometry from the perspective of a computer scientist. This topic always fascinated me. However, this is a good reading for the algorithmic roots of geometry. “…Egyptian and Greek geometry were masterpieces of applied mathematics. It is well established that the original motivation for tackling geometric problems was the need to tax lands accurately and fairly […]
Here I am testing the nesting. RhinoNest is a plug-in for Rhino and a set of components for Grasshopper. I tested it using my old interlocking fabrication definition (here) and (here). I downloaded RhinoNest from this website and installed it. However, I sounded a little complicated at first sight. Then I found a sample definition (here) and modified it a little bit to meet my purposes. First of all, I added orientation components […]
I have come across several high school topics I was afraid of. While I was searching for a geodesic dome definition in Grasshopper, it was quite surprising that I found an easier way of modeling an approximation of icosahedron, the famous platonic solid. Icosahedron was a research topic of this website at various posts before (here, here, and here). In order to generate geodesic spheres, first I had to solve […]
Yesterday, Kağan asked me about the isovist component in Grasshopper and how it works. In fact, it is a long story, I said because once upon a time, I was curious about Space Syntax theory as my old friend Ela Çil introduced it. So, here is an original definition of Michael Benedikt; “The environment is defined as a collection of visible actual surfaces in space. An isovist is the set […]