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Introduction 
The Pen tool and numerous other spline functions in contemporary applications utilize the 
Bezier model. A mathematical spline is defined as a curve that passes through a given set of 
points and maintains a certain number of continuous derivatives. Historically, splines were first 
used in ship construction to create outline curves for the main structures, crafted by hand 
without the use of technical mathematical formulas. However, during the early 1960s, the 
French car manufacturer Citroen employed a young mathematician, Paul de Casteljau, to 
address various geometrical and practical issues arising from car production lines. De Casteljau 
developed a system primarily focused on the design of curves and surfaces, rather than merely 
reproducing existing blueprints. Concurrently, engineer Pierre Bezier, working in the design 
department of Renault, a rival French car manufacturer, recognized the necessity for 
mathematical representations of mechanical parts. 

 
Figure 1: Pen tool in Photoshop. 

 
Figure 2: An excerpt from P. de Casteljau's writings.1 

Their works remained independent from each other, but the breakthrough insight of this 
realization was the use of control polygons, a technique that was never used before. Instead of 
defining a curve through points on it, a control polygon utilizes points near it. This meant, that 

 
1 Farin, Gerald E.. “A History of Curves and Surfaces in CAGD.” Handbook of Computer Aided Geometric 
Design (2002). 
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instead of changing the curve directly, one changes the control polygon, and the curve follows 
in a very intuitive way. Bezier curves can use functions depending on how many points are 
going to be used to create control polygons. Thus, amplifying the needed function to create a 
spline. 

 
Figure 3: Various degrees of Bezier curves. 

Formulating Degrees 
A Bezier curve is constructed by points. These points are called control points. Every Bezier 
curve is a series of linear interpolations between control points. Let P0 and P1 be two control 
points in a two-dimensional cartesian space. The line between P0 and P1 can be defined by 
linear interpolations. First, a vector V0 is defined with its tail on the origin and tip on P0. Then 
a second vector V1 is defined with the same origin as P1. The curve that is going to be defined 
is a parametric curve. Therefore, a parameter t is going to be used as a real number between 0 
and 1. V0 is going to be multiplied by t. This is a vector scalar multiplication which means the 
length of V0 decreases without a change in direction. V1 is going to be multiplied by 1-t. Then, 
the resulting vectors are added. This addition will generate a vector in which its tip point Q is 
on the line between the line P0 and P1. If t is 0 then x is on the P0 or if t is 1 then x is on P1. All 
real numbers between 0 and 1 will generate a point on the line. The figure below illustrates 
this. This is called interpolation. Let Q(x,y) be a point on the line between P0 and P1. The 
functions to calculate x and y are; 

𝑓𝑓(𝑥𝑥) = 𝑡𝑡𝑃𝑃0𝑥𝑥 + (1 − 𝑡𝑡)𝑃𝑃1𝑥𝑥 

𝑔𝑔(𝑦𝑦) = 𝑡𝑡𝑃𝑃0𝑦𝑦 + (1 − 𝑡𝑡)𝑃𝑃1𝑦𝑦 

 
Figure 4: First-degree (linear) functions 

The Functions above are parametric functions of a linear (degree 1) Bezier curve. Second-
degree Bezier curves have three control points P0, P1, and P2. To draw a second-degree 
(quadratic) Bezier curve the linear interpolation procedure explained above is repeated 3 times. 
The first parameter t is decided between 0 and 1. Q0 is defined as a linear interpolation between 
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P0 and P1. Then Q1 will be defined as another linear interpolation between P1 and P2. Point X 
on the curve is a linear interpolation between Q0 and Q1.  

𝑄𝑄0 = 𝑡𝑡𝑃𝑃0 + (1 − 𝑡𝑡)𝑃𝑃1 

𝑄𝑄1 = 𝑡𝑡𝑃𝑃1 + (1 − 𝑡𝑡)𝑃𝑃2 

𝑋𝑋 = 𝑡𝑡𝑄𝑄0 + (1 − 𝑡𝑡)𝑄𝑄1 

Therefore, the equation can be combined and put in a single formula; 
𝑋𝑋 = 𝑡𝑡(𝑡𝑡𝑃𝑃0 + (1 − 𝑡𝑡)𝑃𝑃1) + (1 − 𝑡𝑡)(𝑡𝑡𝑃𝑃1 + (1 − 𝑡𝑡)𝑃𝑃2) 

𝑋𝑋 = 𝑡𝑡2𝑃𝑃0 + 2(1 − 𝑡𝑡)𝑡𝑡𝑃𝑃1 + (1 − 𝑡𝑡)2𝑃𝑃2 

This formula is used to find X with control points without the need to calculate Q0 and Q1. 

 
Figure 5: Degree 2 Bezier curve construction. 

Third Degree (Cubic) is the most common type of Bezier curve used in CAD because it 
generates smooth curves with a minimum number of control points. A third-degree Bezier 
curve has four control points P0, P1, P2, and P3. To draw a Third-degree Bezier curve the linear 
interpolation procedure is repeated 6 times. The first parameter t is decided between 0 and 1. 
Q0 is defined as a linear interpolation between P0 and P1. Then Q1 will be defined as another 
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linear interpolation between P1 and P2. Then Q2 will be defined as another linear interpolation 
between P2 and P3. R0 and R1 will be defined as another linear interpolation between Q0, Q1 
and Q1, Q2  respectively. Point X on the curve is a linear interpolation between R0 and R1.  

 

𝑄𝑄0 = 𝑡𝑡𝑃𝑃0 + (1 − 𝑡𝑡)𝑃𝑃1 

𝑄𝑄1 = 𝑡𝑡𝑃𝑃1 + (1 − 𝑡𝑡)𝑃𝑃2 

𝑄𝑄2 = 𝑡𝑡𝑃𝑃2 + (1 − 𝑡𝑡)𝑃𝑃3 

𝑅𝑅0 = 𝑡𝑡𝑄𝑄0 + (1 − 𝑡𝑡)𝑄𝑄1 

𝑅𝑅1 = 𝑡𝑡𝑄𝑄1 + (1 − 𝑡𝑡)𝑄𝑄2 

𝑋𝑋 = 𝑡𝑡𝑅𝑅0 + (1 − 𝑡𝑡)𝑅𝑅1 

The above equation is going to be used while defining the guitars' shape. This equation also 
can be combined and put in a single formula.  

𝑋𝑋 = (1 − 𝑡𝑡)3𝑃𝑃0 + 3(𝑡𝑡 − 1)2𝑡𝑡𝑃𝑃1 + 3(1 − 𝑡𝑡)𝑡𝑡2𝑃𝑃2 + 𝑡𝑡3𝑃𝑃3 

 
Figure 6: Degree 3 Bezier curve construction 
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The general formula for the n-degree Bezier curve can be found using Bernstein polynomials 
and Binomial functions; 
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Guitar Surface 

 
Figure 7: The guitar that is going to be measured. 

The shape of a guitar is too complex to be defined by four control points. Therefore, the shape 
is divided into 3 sections on both sides. Using multiple pieces to find a function with the Beizer 
application is called a piecewise function. The below figure illustrates this approach. After 
measuring with a ruler meter, the length of the guitar body was found to be 47 ± 0.1 cm. 
Therefore, the highest point value will be given as 47 to keep it to scale. 

 
Figure 8: Division of the guitar shape into six sections. 
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Figure 9: Drawing the three Bezier curves (degree-3) by approximating the guitar shape. 

Each of the three sections contains a degree-three Bezier curve so that they each have four 
control points. The figure above shows the approximation of these points on a photo of the 
guitar. To make the curves continuous while piecewise, the first and the last control points of 
the curves are overlapping. For example, A4 and B1 are overlapping. To make the overall shape 
smooth the first and last control points of the curves are made collinear. For example, A3 A4(B1) 
and B2 are collinear. Finally, the drawing is made by overlapping the symmetry axis of the 
guitar to the x-axis. So, the area between the sections and the x-axis would give the area of that 
section on the guitar. 

 
Figure 10: Coordinates of the control points. 

Appling the Bezier Formula 
The third degree Bezier formula (explained in earlier chapters) will be used to determine the 
parametric equations of the three sections: 

𝑋𝑋 = (1 − 𝑡𝑡)3𝑃𝑃0 + 3(𝑡𝑡 − 1)2𝑡𝑡𝑃𝑃1 + 3(1 − 𝑡𝑡)𝑡𝑡2𝑃𝑃2 + 𝑡𝑡3𝑃𝑃3 

Troughout this study the CAD drawigns are made by Rhinoceros software which can be used 
to draw Bezier curves of any degree. Also, the area between the curves and the x axis can be 
calculated to check the results of the area calculation. This software is an industry standard for 
architechs and disigners. Moreover, the formulas obtained in this study are also checked with 
the software to validate the parametric curves.  
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Curve A 

 
Figure 11: Control points of Curve A section 

The third-degree Bezier curve formula will be applied to the Curve A section control points. 
Those points and their values are found using the Rhinocer CAD application. Also, in CAD a 
value of t (0.5) is given to visualize geometrical application proof. As Curve A starts from the 
origin (0,0), interpolation between A1 and A2 points will give a relatively short equation to later 
sections.  

f(t) = (1 − t)3 ∗ 0.0 + 3 ∗ (1 − t)2 ∗ t ∗ −0.56 + 3 ∗ (1 − t) ∗ t2 ∗ 9.80 + t3 ∗ 23.94 

𝑔𝑔(𝑡𝑡) = (1 − 𝑡𝑡)3 ∗ 0.0 + 3 ∗ (1 − 𝑡𝑡)2 ∗ 𝑡𝑡 ∗ 15.78 + 3 ∗ (1 − 𝑡𝑡) ∗ 𝑡𝑡2 ∗ 24.37 + 𝑡𝑡3 ∗ 14.63 

The equations for Curve A can be shorted as; 

f(t) = 23.94t3 − 1.68t(1 − t)2 + 29.4(1 − t)t2 

g(t) = 14.63t3 + 47.34t(1 − t)2 + 73.11(1 − t)t2 

 
Figure 12: An example calculation to find t=0.5 on Curve A 



7 

To test the cubic formulas t (0.5) is evaluated and shown visually above. If the point from any 
t value is correct it should be on the curve, therefore giving t half value would give 
parametrically the middle point of the curve.  Below is the algebraic computation of the point 
on Curve A at the parametric middle point to 2 decimal points. 

f(0.5) = 23.94 ∗ 0.53 − 1.68 ∗ 0.5 ∗ (0.5)2 + 29.4 ∗ (0.5) ∗ 0.52 = 6.45 

g(0.5) = 14.63 ∗ 0.53 + 47.34 ∗ 0.5 ∗ (0.5)2 + 73.11 ∗ (0.5) ∗ 0.52 = 16.88  

Curve B 

 
Figure 13: Control points of Curve B section 

The same process will be followed in Curve B and C sections. That is calculating the cubic 
formula with the t parameter and giving t (0.5) points and labeling points visually. From the 
third-degree formula, a longer equation from the previous section will be achieved as expected. 
The point values were found with the same command before and ending points are accurately 
connected. 

𝑓𝑓(𝑡𝑡) =  (1 − 𝑡𝑡)3 ∗ 23.94 + 3 ∗ (1 − 𝑡𝑡)2 ∗ 𝑡𝑡 ∗ 28.83 + 3 ∗ (1 − 𝑡𝑡) ∗ 𝑡𝑡2 ∗ 30.41 + 𝑡𝑡3 ∗ 33.70 

𝑔𝑔(𝑡𝑡)  =  (1 − 𝑡𝑡)3 ∗ 14.63 + 3 ∗ (1 − 𝑡𝑡)2 ∗ 𝑡𝑡 ∗ 11.26 + 3 ∗ (1 − 𝑡𝑡) ∗ 𝑡𝑡2 ∗ 11.58 + 𝑡𝑡3 ∗ 12.88 

The equations for Curve B can be shorted as; 

f(t) = 33.70t3 + (1 − t)323.94 + 86.49(1 − t)2 + 91.23(1 − t)t2 

g(t) = 12.88t3 + (1 − t)314.63 + 33.78(1 − t)2t + 34.74(1 − t)t2 
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Figure 14: An example calculation to find t=0.5 on Curve B 

f(0.5) = 33.70(0.5)3 + (0.5)323.94 + 86.49(0.5)2 + 91.23(0.5)0.52 = 29.42 

g(0.5) = 12.88(0.5)3 + (0.5)314.63 + 33.78(0.5)2t + 34.74(0.5)0.52 = 12.00 

 

Curve C 

 
Figure 15: Control points of Curve C section 

In the last section same steps were followed and achieved these results. 

𝑓𝑓(𝑡𝑡)  =  (1 − 𝑡𝑡)3 ∗ 33.70 + 3 ∗ (1 − 𝑡𝑡)2 ∗ 𝑡𝑡 ∗ 42.33 + 3 ∗ (1 − 𝑡𝑡) ∗ 𝑡𝑡2 ∗ 47.43 + 𝑡𝑡3 ∗ 47.0 

𝑔𝑔(𝑡𝑡)  =  (1 − 𝑡𝑡)3 ∗ 12.88 + 3 ∗ (1 − 𝑡𝑡)2 ∗ 𝑡𝑡 ∗ 16.09 + 3 ∗ (1 − 𝑡𝑡) ∗ 𝑡𝑡2 ∗ 10.05 + 𝑡𝑡3 ∗ 0.0 

The equations for Curve C can be shorted as; 

f(t) = 47.00t3 + 33.70(1 − t)3 + 126.99(1 − t)2t + 142.29(1 − t)t2 

g(t) = 12.88(1 − t)3 + 48.27(1 − t)2t + 30.15(1 − t)t2 
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Figure 16: An example calculation to find t=0.5 on Curve C 

Lastly, to visually demonstrate the equation and geometrical connectivity t will be given as 0.5 
for the last section.  

f(0.5) = 47.00(0.5)3 + 33.70(0.5)3 + 126.99(0.5)20.5 + 142.29(0.5)0.52 

g(0.5) = 12.88(0.5)3 + (0.5)3 + 48.27(0.5)20.5 + 30.15(0.5)0.52 

 

Determining Surface Area 
To calculate the surface area of the guitar, applying the integral rule to the parametric function 
found with Bezier curves on the 3 sections separately is needed. The three sections are drawn 
by overlapping the symmetry axis of the guitar on the x-axis. Thus, the area between the 
sections and the x-axis would give the half of the surface area of that section on the guitar. 
Using the below equation would give (A) Area enclosed by the parametric function. The result 
is calculated using an online integral calculator (https://www.integral-calculator.com/) for each 
section and is validated on the CAD tool’s “area” command. The result data is given in cm 
form with 2 decimal points. 

𝐴𝐴 = �𝑔𝑔(𝑡𝑡) 𝑓𝑓′(𝑡𝑡) 𝑑𝑑𝑡𝑡 
1

0

 

For Curve A; 

𝑓𝑓′(𝑡𝑡) = −
1071t2 − 3276t + 84

50
 

𝐴𝐴 = �
(14.63𝑡𝑡3 + 47.34𝑡𝑡 ⋅ (1 − 𝑡𝑡)2 + 73.11(1− 𝑡𝑡)𝑡𝑡2)(−1071𝑡𝑡2 + 3276𝑡𝑡 − 84)

50

1

0

 𝑑𝑑𝑡𝑡 = 390.28 

For Curve B; 

𝑓𝑓′(𝑡𝑡) = −
24441𝑡𝑡2 − 49908𝑡𝑡 + 24480

100
 

𝐴𝐴 = �
(12.88t3 + (1 − t)314.63 + 33.78(1− t)2t + 34.74(1− t)t2) (−24441𝑡𝑡2 + 49908𝑡𝑡 − 24480)

100  𝑑𝑑𝑡𝑡 = 
1

0

123.95 
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Lastly for Curve C; 

𝑓𝑓′(𝑡𝑡) = −
810𝑡𝑡2 + 1978𝑡𝑡 − 2589

100
 

𝐴𝐴 = �
(12.88t3 + (1 − t)3 + 48.27(1 − t)2t + 30.15(1 − t)t2) (−810𝑡𝑡2 − 1978𝑡𝑡 + 2589) 

100
𝑑𝑑𝑡𝑡 = 

1

0

160.85 

So, the total area of the three sections was found 390.28 + 123.95 + 160.85 = 675.08 cm2. 
However, this area is only one-half of the surface with a sound hole in it too. After doubling 
one half 2 * 675.08 = 1350.16 cm2 and measuring the diameter (8.3cm) of the hole to find the 
area of the circle (54.44 cm2), the total area of the guitar surface was found; 

1350.16 –  54.44 =  1295.72 𝑐𝑐𝑐𝑐2 

Conclusion 
In this paper, Bezier curves were utilized to analyze the shape and the surface area of the guitar. 
The construction of Bezier curves is based on a series of linear interpolations. This gives the 
utility to express any Bezier curve in terms of parametric polynomials. This study demonstrated 
that three third-degree curves are sufficient to approximate the curved shape of a guitar body. 
The functions derived from this approximation give us the fundamental algebraic definition. 
Thus one can draw the shape with the help of these functions. The inspiring part of this study 
is that the mathematical explanation of curve shapes is strongly related to the developments in 
technology and engineering. This eliminates the need for physical templates or blueprints 
which can be worn out. Instead, the algebraic definitions are useful to store any given shape 
mathematically so that they can be regenerated without any loss of information. Finally, the 
surface areas between these curves and the x-axis can be calculated.  

The Bezier curves are an efficient way to create these algebraic definitions. They are widely 
used in computer-aided design because a designer can draw and transform any curve easily and 
visually by placing control points. The designers don’t have to know the mathematics behind 
these curves focusing on their work. However, in this study, these mathematical underpinnings 
are explained and used to express this hidden relationship between mathematics and design. 
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