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THE RELATIONSHIP BETWEEN GAUSSIAN CURVATURE AND 
ARCHITECTURAL SURFACE PANELING 
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Abstract. Since the design of free-form architectural surfaces becomes easier, questioning 
and foreseeing the feasibility of the construction of these surfaces became important. Such 
an inquiry requires sufficient knowledge of architectural geometry besides the knowledge of 
materials and structural systems. In this article, a preliminary example of a guide that 
supports the design and production process of building surfaces with different geometric 
properties is presented. This guide aims to reveal the relationship between Gaussian 
curvature which is an intrinsic geometric feature of architectural surfaces, and some of the 
widespread paneling strategies. After the literature review and the description and 
classification of curvature and paneling concepts via architectural examples, a comparative 
table has been created. The resulting table facilitates answering the question of whether it is 
possible geometrically to build architectural surfaces with different paneling strategies, 
especially in the early phases of architectural design. Thus, this preliminary information can 
be helpful to the designer regarding the estimated cost, the materials, and the technologies 
to be selected. Further development of such guides will help architects and students to use 
geometry more consciously. 
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INTRODUCTION 

Paneling free-form building surfaces is an interdisciplinary field of application and research. 
This area encompasses components from design and engineering, as well as geometry, 
mathematics, and computer science. In recent architectural discourse, two primary sources 
stand out when exploring this subject. In his 2006 publication "Algorithmic Architecture", 
Kostas Terzidis argues that algorithms are not just a series of computer codes or a 
mechanical expression language used for step-by-step problem-solving, but also an 
ontological structure with deep philosophical, social, and artistic impacts (Terzidis, 2006). 
This concept, as articulated by Terzidis, has brought forth a range of ideas suggesting that 
architects and computer programmers share some common ground in their expertise. 
Coding has evolved from being a luxury for designers to becoming a new and effective tool 
in their toolkit. A year later, mathematician Helmut Pottmann, along with geometry experts 
and designers, compiled the book "Architectural Geometry," reminding architects that 
geometry is not just a resource to be consumed, but can still be a subject of research 
(Pottmann et al., 2007). The parametric design tools developed by the generation that 
graduated from architecture schools during this period are worth examining as synthesizers 
of these ideas. These tools have led to the creation of general-purpose generative design 
software, establishing a shared educational system in virtual environments. Notable 
examples of these tools include David Rutten’s "Grasshopper" developed after graduating 
from Delft University of Technology in 2006, as well as Daniel Piker’s "Kangaroo," Giulio 
Piacentino’s "Weaverbird," Mateusz Zwierzycki’s "Anemone," Mostapha Sadeghipour 
Roudsari’s "Ladybug, Honeybee, Butterfly," and Milos Dimcic’s "eVe."  
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These tools and programming languages, developed by architects, help utilize time and 
information efficiently in architectural practices and are also recognized as laboratory tools 
in academic studies. This system of thought and the background of these tools prompt 
designers to revisit geometry and algorithms from a new perspective. Consequently, 
computational geometry is becoming a useful body of knowledge for architects. The 
convergence of architecture, mathematics, and computer science (Figure 1) fosters the 
emergence of research topics with easily foreseeable economic value and appeal. “Paneling 
of architectural surfaces” is a contemporary research topic that emerged from this 
intersection. 

 

Figure 1. The context of the research topic 

Architectural paneling involves dividing building surfaces into segments that meet criteria 
such as cost, production capabilities, construction materials, energy conservation, etc. 
Architects often require solutions to complex, multi-variable problems of surface paneling, 
prompting collaboration with experts from various disciplines. Mathematicians and 
computational geometry specialists contribute to the basis of these problems by developing 
surface discretization algorithms or adapting existing ones to specified problems. Computer 
programmers then translate this basis into tools that compute and propose solutions tailored 
to the design problem. The solutions obtained range from simple scripts addressing the 
specific needs of individual projects to more general-purpose extensions, plugins, and 
software. Given the diversity of architectural problems, a universal paneling tool that can 
offer the optimal solution in every scenario is not feasible. From an architectural design 
perspective, abstract surfaces created in early design stages can be paneled during later 
phases, or they can initially be designed to fit a paneling method on purpose. Architectural 
paneling methods vary widely, from simple solutions achievable with traditional drawing 
tools to those requiring high computational costs and thus necessitating specialized 
software. 

Accessing advanced paneling solutions, particularly in cases where specialized work groups, 
consultations, or software are unavailable, poses challenges in achieving the efficiency and 
economic benefits promised by these solutions. Additionally, some popular solutions, 
admired for their geometric ingenuity and refined appearances, may lose their relevance and 
purpose if they neglect geometric achievements and the benefits outlined above. Academic 
studies in this field increasingly define a specialized expertise. This article proposes a 
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method to expedite the transformation of research findings in the evolving field of 
architectural paneling into practical knowledge. The introductory section of the article 
provides a general overview of existing research on this topic (as of 2018). Analyses related 
to architectural paneling primarily depend on a good understanding of surface geometry, a 
mathematical component of the subject. This article focuses on surface curvature, an 
intrinsic geometric property of architectural surfaces. Subsequent sections examine various 
surface paneling approaches, selected for their simplicity using basic architectural drawing 
knowledge and contemporary design tools. These preliminary studies culminate in a 
comparison that explores the feasibility of applying different paneling approaches to 
surfaces with varying curvatures. This comparison aims to facilitate architects in forming 
anticipations based on fundamental surface geometry knowledge, thus preventing or 
mitigating the dulling of such insights before the need for specialized software or 
consultations arises. The final section discusses further research progress. 

LITERATURE REVIEW 

Research focusing on the paneling of architectural surfaces has significantly expanded and 
gained momentum over the past decade. Studies in this area address fundamental research 
problems such as ensuring that surface panels are planar, accurately following surface 
curvatures, or minimizing the variety of panels to reduce costs. One common research topic 
is calculating how free-form surfaces can be constructed using panels cut from planar 
materials. While triangulated surfaces are a widely used solution, it is known to be more 
costly compared to quadrilateral paneling in the context of architectural surface paneling, 
due to the greater number and variety of seam details triangles produce compared to 
quadrilaterals (Pottman et al., 2007, Pottmann et.al, 2007b). The convergence of more than 
three panels at the same point begins to complicate static calculations. Triangulation often 
results in scenarios where six panels converge at the same point at different angles, making 
it difficult to compute points without torsion (Cutler and Whiting, 2007, Pottman et.al. 
2007b). 

Another current research topic is dividing surfaces using planar quadrilaterals. Berk's 
doctoral thesis examines various algorithms that partition surfaces into planar quadrilateral 
panels, discussing their advantages and disadvantages (Berk, 2012). Some studies suggest 
that specific mathematical surface constructions are more suitable for planar quadrilateral 
paneling (Glymph et.al, 2004, Berk, 2012, Pottmann, 2007) when deciding on quadrilateral 
paneling before commencing design. Conversely, several researchers explore the post-
design generation of planar quadrilateral panels for free-form surfaces, aiming to minimize 
deviation from the surface (Pottmann, 2007). For instance, any surface can utilize principal 
curvature lines for quadrilateral planar paneling (Liu et.al., 2011). 

New methods are being developed to produce panels with more edges than quadrilaterals. 
For example, Pottmann et al. highlight the close relationship between surface curvature and 
paneling with hexagonal panels tailored to fit the surface curvature (Pottmann et.al., 2014). 
Rörig et al. (2014) seek solutions for placing hexagonal panels optimally on surfaces, 
emphasizing criteria such as flatness, equilateral sides, and uniformity (Rörig, et. al. 2014). 
Research also examines manufacturing opportunities related to surface curvature rather 
than the number of panel edges. For example, the Landesgartenschau exhibition hall, 
developed and built in 2014 by Achim Menges and colleagues, exemplifies paneling that 
conforms to Gaussian curvature (Menges, et.al., 2014). Another study by Pottmann et al. 
(2008) examines the use of single-curvature panels instead of planar panels, while Berk's 
doctoral thesis explores the potential use of non-planar panels on such surfaces (Berk, 2012). 
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Eigensatz et al. (2010) present a cost-focused study for paneling free-form surfaces using 
molds of various types like plane, cylindrical, paraboloid, cubic, or toroidal, highlighting cost 
advantages. Rather than focusing on specific geometric problems, another research 
perspective provides a broader view, noting a shift in the construction industry from "Can 
we build this?" to "Should we build this?" after comparing various paneling approaches, 
underscoring the importance of healthy communication among architects, engineers, and 
contractors (Hambleton et.al., 2009).  

Research in this field is supported by research and development (R&D) groups such as 
Evolute (www.evolute.com), Gehry Technologies (www.gehrytech.com), and Mesh 
(www.meshconsultants.ca), which provide consultancy to architectural offices. These 
collaborations involve architects, structural engineers, mathematicians, and computational 
design experts working together to develop solutions that effectively panel complex surfaces 
according to criteria like cost, material, and production capabilities. Some research in this 
field focuses on transferring architectural application experiences (Schifner et.al., 2012). For 
example, Kaijima and Michalatos (2007) discuss a project where different surface 
segmentation approaches were experimented with, examining design criteria and 
segmentation options. Studies also show that software plugins are being used as auxiliary 
tools, where these tools are tested and compared. Henriksson and Hult's master's thesis 
(2015) examines current design tools that can optimize load distributions and panel 
similarities during the segmentation of free-form surfaces.  

The "Advances in Architectural Geometry" symposiums serve as platforms where research 
on architectural surface paneling is presented and published, featuring papers 
collaboratively authored by researchers from various disciplines. Software plugins 
mentioned earlier are actively used by companies specializing in designing and producing 
precast building facades. However, the transformation of this experience into R&D in the 
industry and academic responses capable of meeting this demand in architectural education 
are still in their infancy. 

CLASSIFICATION OF ARCHITECTURAL SURFACES 

Research on surface curvature has evolved through various stages and definitions since 
ancient Greece, gaining momentum with the development of Calculus by Newton and 
Leibniz in the 17th century following works by Descartes, Kepler, Fermat, and Huygens 
(Stillwell, 2010). The concept of curvature derived from these developments has led to 
significant advances in fields such as mathematics and physics, prompting a reassessment 
of propositions in Euclidean geometry, as well as clarifying the mathematical and physical 
meanings of space, time, and gravity (Stillwell, 2010). Today, the curvature of curves and 
surfaces falls under the realm of differential geometry. This article focuses on surface 
curvature as relevant to its application in architecture, specifically in terms of intrinsic 
curvature, which refers to the curvature inherently possessed by objects independent of the 
space they occupy. The method for calculating the intrinsic curvature of surfaces was defined 
by Carl Gauss in the 19th century and is therefore named Gaussian curvature. To explain 
Gauss's method for calculating surface curvature, it is first necessary to understand how the 
curvature of curves is calculated. According to this definition, curvature (K) is inversely 
proportional to the size of the osculating circle at a point t on a curve AB (Figure 2). This 
circle is not just any tangent circle but the one that best approximates the curve. The center 
of this circle is called the curvature center. As curvature increases at point t, the radius (r) of 
the osculating circle decreases. This indicates that the curve is more curved at that point (K 
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increases). As the curve flattens at point t, the osculating circle also grows (r increases). The 
axis connecting the center of the osculating circle with point t is perpendicular to the curve.  

 

Figure 2. Calculation of curvature via osculating circle 

The surface curvatures studied in this research are measured using two osculating circles 
created using the method described above, taken in both directions from a point t on the 
surface (Figure 3). Principal curvatures in both directions (K1 and K2) are obtained through 
the osculating circles of these sections passing through point t. These two sections are always 
perpendicular to each other (Stillwell, 2010). 

 

Figure 3. Calculation of surface curvature 

After obtaining the two principal curvature values, the curvature at point t on the surface can 
be calculated in the following forms: 

(K1 + K2) / 2: The arithmetic mean of the principal curvatures will give the mean curvature 
of the surface at that point. 

K1 × K2: The product of the principal curvatures will give the Gaussian curvature of the 
surface at that point. 

Since mean curvature is a ratio, it is an independent value from the size of the measured 
surface. Therefore, it is not common in architectural surfaces and is generally used in other 
fields of computational geometry. The most common use of mean curvature in architecture 
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is in minimal surfaces. The mean curvature on minimal surfaces is zero at every point (K1 + 
K2 = 0). This is possible in surfaces where the principal curvatures in both directions are 
continuously equal and opposite. One of the most well-known examples demonstrating the 
scale independence of mean curvature is the experiments Frei Otto conducted with soap 
bubbles to create minimal surfaces. These experiments made it possible to design and 
manufacture the roof of the 1972 Munich Olympic Stadium. 

On the other hand, the Gaussian curvature addressed in this study is related to the 
dimensions of the surface being studied. As the surface increases in size, Gaussian curvature 
decreases. Therefore, it encapsulates information that can be measured and scaled. 
Performance aspects linked closely with Gaussian curvature include a surface's ability to 
unfold on a flat plane. If at least one of the osculating circles is infinitely large, the section 
taken is a straight line, indicating zero Gaussian curvature at that point (Ka × 0 = 0). Surfaces 
with zero Gaussian curvature at every point can be unfolded into a flat plane or constructed 
from flat materials by folding (Figure 4, left). Folding motions that do not involve stretching 
or shrinking also maintain Gaussian curvature (Conway et al., 2010). Therefore, surfaces with 
zero Gaussian curvature can be matched isometrically to planes and are thus developable. 
This knowledge is applied in computer graphics and architectural modeling to apply texture 
to objects for obtaining photorealistic images. 

 

Figure 4. Gaussian curvature; (left) zero, (middle) positive, (right) negative curvature cases 

Surfaces with non-zero curvature, hence unable to be unfolded into a plane, are known in 
architectural discourse as doubly curved. Non-zero Gaussian curvatures are either positive 
or negative. Positive Gaussian curvature exists where both osculating circles lie on the same 
side of the surface (Figure 4, middle). In regions with positive Gaussian curvature, the edges 
of the surface curve towards the same side, indicating a tendency for closure. On surfaces 
with positive Gaussian curvature, the sum of interior angles of a triangle drawn on the surface 
exceeds 180 degrees, and the circumferences of circles drawn on the surface are greater than 
2 × Pi × R. Points on a surface with positive Gaussian curvature are termed elliptic points, and 
surfaces with positive Gaussian curvature are called synclastic surfaces. Surfaces defining 
closed volumes typically have positive Gaussian curvature. If a surface has constant positive 
Gaussian curvature at every point, it is part of a sphere or a spherical segment. Shapes 
containing positive curvature generally show a tendency to close and typically form 
structures that perform under pressure distribution. The geometric solution of the sphere 
designed by Buckminster Fuller in 1982 Spaceship Earth in Florida, USA, illustrates positive 
curvature. Geodesic sphere design is closely linked to constant positive Gaussian curvature 
cases. It is possible to state that designs typically referred to as thin shell structures in 
architectural discourse generally contain surfaces with constant or variable positive 
Gaussian curvature. An example of surfaces with variable positive Gaussian curvature in 
architecture is the St. Mary Axe building in London, designed by Foster + Partners and 
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completed in 2004. The shell of the building is a surface with increasing positive curvature 
as it approaches the peak (Figure 5). 

 

Figure 5. St. Mary Axe Building (London, England), Architect: Foster + Partners, 2004 

If the two osculating circles are on opposite sides of the surface, the Gaussian curvature of 
the surface at that point is negative (Figure 4, right). In regions with negative Gaussian 
curvature, the surface's two directions curve in opposite directions, indicating a tendency not 
to close at that point. On surfaces with negative Gaussian curvature, the sum of interior 
angles of a triangle drawn on the surface is less than 180 degrees, and the circumferences of 
circles drawn on the surface are less than 2 × Pi × R. Points on a surface with negative 
Gaussian curvature are termed hyperbolic points, and surfaces with negative Gaussian 
curvature are called anticlastic surfaces. If a surface has negative Gaussian curvature at every 
point, it is not closed. The pseudosphere can be shown as an example of a surface with 
negative Gaussian curvature at every point. Shapes consisting of surfaces with negative 
curvature tend to be referred to as canopies in architectural terms due to their characteristics 
described above. The garage gate built by Santiago Calatrava in Coesfeld, Germany, in 1985, 
featuring surfaces with variable negative curvature, can be given as an example of 
mathematical surfaces. As one of the best-known examples of architectural interpretations 
of hyperboloid surfaces with variable negative curvature, the Brasilia Cathedral, completed 
by Oscar Niemeyer in Brazil in 1970, illustrates this (Figure 6). The tendency towards infinite 
opening created by negative curvature was used in the Palmira Chapel in Mexico designed 
by Félix Candela. Candela designed the thin reinforced concrete roof as a hyperbolic 
paraboloid, joining researchers like Buckminster Fuller, Frei Otto, Heinz Isler, and other 
contemporaries in the era where modern architecture intersected with mathematics and 
geometry. Another surface class widely used in architecture is ruled surfaces. It often 
misleadingly appears to have straight lines in one direction, suggesting they are surfaces 
with zero Gaussian curvature and thus can be unfolded flat. However, these surfaces do not 
have zero principal curvature, and their Gaussian curvature (excluding focal points) is 
negative everywhere. Ruled surfaces used in the facade design of the Walt Disney Concert 
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Hall in Los Angeles are therefore supported by flat supports but are not openable in terms of 
surface paneling (double-curved surfaces) (Figure 7). 

 

Figure 6. Brasilia Cathedral (Brazil), Architect: Oscar Niemeyer, 1970 

 

Figure 7. Walt Disney Concert Hall (USA), Architect: Frank Gehry, 2003 

Although the fundamental conditions related to Gaussian curvature (regular or variable 
positive, negative, and zero curvature) described above encompass all possibilities, these 
three conditions can be mixed in different areas of surfaces for different purposes. These 
surfaces, defined in architectural jargon as free-form surfaces, can be observed in places like 



9 
 

Zaha Hadid Architects Heydar Aliyev Center completed in Baku, Azerbaijan in 2012, or the 
canopy of Nordpark Railway Station built in Austria in 2007 (Figure 8). In such facade 
surfaces, negative, positive, and zero curvatures are all mixed. 

 

Figure 8. Nordpark Railway Station (Austria), Architect: Zaha Hadid Architects, 2007 

Another significant example of such surfaces, entering architectural discourse as 
"Blobitecture," is the Bubble designed by Franken \ Architekten Gmbh and completed in 
Frankfurt in 1999. The bulging sections around the blobs exhibit positive curvature, while 
the connecting surfaces formed where two blobs approach each other flex and extend, 
acquiring negative curvature. Increasing the number of such examples enables the 
perception of differences in surface curvatures through observation alone, without any 
calculations. The classification of architectural surfaces according to their Gaussian 
curvatures is summarized in Table 1. 

 

Table 1. Surface classes according to their Gaussian curvatures 

ARCHITECTURAL PANELING BASICS 

Surface discretization involves defining subsets of mathematical surfaces. The mathematical 
foundation of architectural paneling lies within the domain of surface discretization. This 
process typically involves placing reference point sets on parametric surfaces to establish 
boundaries and define neighborhood relationships among these points (Frank, 2009). 
Various methods can be used to define point sets and neighborhood relationships, with the 
choice of method depending on the expected success of the outcome. Within the scope of 
this study, some of the basic surface discretization approaches are selected. The selection 
criteria are as follows: 

• Examples which are known for their use, particularly in early design stages, 
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• Approaches suitable for both traditional computer-aided design tools and parametric 
modeling and scripting, 

• Approaches aiming to represent the research area as comprehensively as possible, 
focusing on diverse criteria for success, 

• Approaches capable of adhering to falsifiability principles, due to the rapid 
advancements and updates in the research field. 

Contouring 
This paneling approach involves taking sections on the surface, placing points on these 
sections, and connecting the points to create panels (Figure 9). The result obtained from this 
approach depends on the direction and spacing of the section planes. The architectural 
examples paneled with similar approaches include the Kunsthaus completed in Graz, Austria 
in 2003, designed by Colin Fournier and Peter Cook. The panels of this structure are all 
different from each other and doubly curved. Foster + Partners' Sage Gateshead building 
completed in London in 2004 demonstrates a specific case where panels created using this 
method can be planar (Figure 10). In this example, special surface geometries called 
translational are paneled with flat rectangles. For this to happen, the source surface must be 
specifically tailored to fit this paneling approach, and sections must be taken accordingly. 

 

Figure 9. Paneling surfaces using the contouring approach 

 

Figure 10. Sage Gateshead (UK), Architect: Foster + Partners, 2004 
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This method and these examples are significant in emphasizing the relationship between 
design, production, and geometry. They show that geometry and paneling achievements can 
serve as starting points in architectural design, alongside other key parameters such as 
structural systems and spatial organization. In the context of this research, it is important to 
examine how similar paneling approaches on different source surfaces lead architects to 
different design processes. The paneling at Kunsthaus, conforming to the free form of the 
source surface, was carried out as an expression of the design and technology relationship. 
In the case of Sage Gateshead, however, the geometry of paneling (being planar, and 
uniform) has become one of the factors guiding the design decisions. 

Euclidean Spheres 
Euclidean spheres are a three-dimensional adaptation of Euclidean constructions, where two-
dimensional shapes are drawn using a compass and straightedge. It involves intersecting 
spheres with specified radii along the edges of panels (Figure 11). This method allows for 
creating points at desired distances on the source surface. The paneling of Soumaya Museum 
in Mexico City, designed by Fernando Romero is an example of this approach. The report of 
the facade consultation by Gehry Technologies in 2011 (Figure 12) shows that there were 
several trials on the panelization of the surface. One such experiment appears to have utilized 
the Euclidean spheres discussed in this study (Gehry Technologies, 2015). While panels 
created using the Euclidean spheres can effectively control panel sizes, it has been observed 
that all panels may not be uniform on surfaces with mixed curvatures. 

 

Figure 11. Discretization of a hyperboloid using Euclidean spheres 
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Figure 12. Soumaya Museum, Fernando Romero, 2011 

Quad Extension 
In cases where points placed on a surface need to form quadrilaterals, the fourth point is 
shifted to create planar quadrilaterals (Figure 13). This method, unlike others, creates a 
different texture by separating from the surface in regions of increased curvature. This 
method has been applied to many architectural examples. The external facade of The Yas 
Hotel in Abu Dhabi, completed in 2009 and designed by Asymptote Architecture, was 
paneled using this approach. Similarly, Foster + Partners utilized this method for the roof 
design covering the central courtyard of the Smithsonian Institute building completed in 
2007 in Washington, USA. The quad extension approach is particularly effective for surfaces 
with variable curvature and guarantees obtaining planar panels. 

 

Figure 13. Paneling a hyperbolic paraboloid using the quad extension approach 
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Marching Cubes 
Unlike other methods, the marching cubes approach attempts to approximate surfaces using 
a cubic reference system (voxel) placed on the surfaces to create units as closely as possible 
(Figure 14). While these uniform units reduce production costs, they offer the least precise 
approach to architectural surfaces among the methods presented in this study. Though no 
directly known building designs use this paneling approach, it can be anticipated that such 
modular facade designs are frequently used and can be applied to curved surfaces. 

 

Figure 14. Paneling surfaces using the cube projection approach 

Tangent Plane Intersection 
The tangent plane intersection approach involves finding tangent planes at points placed on 
a surface and intersecting these planes to achieve irregular and planar paneling (Figure 15). 
This paneling approach is the subject of current computational design research, with various 
experiments conducted. This approach guarantees planar panels and generates diverse 
polygonal panels, closely related to surface curvature. Effective on surfaces with variable 
curvature, this method can be successfully applied as the variability in positive or negative 
curvature decreases. For example, the Trada Pavilion in England, designed and produced by 
the Ramboll Computational Design group in 2012, is mainly an example of this paneling 
approach applied to surfaces with positive curvature. A similar approach is seen at the 
Landesgartenschau Exhibition Hall designed at the Stuttgart Computational Design 
Institute (ICD) by an interdisciplinary team, offering an innovative solution to how tangent 
plane intersection approach can adapt to surfaces with variable curvatures. 

 

Figure 15. The paneling of surfaces using the tangent plane intersection approach 
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EXPERIMENTS 

The above sections outline the scope of surface curvature and architectural paneling to be 
addressed in this study. The propositions to be tested are as follows: 

• Surface areas based on their curvature (Set A): 
o Regular positive curvature 
o Regular negative curvature 
o Regular zero curvature 
o Variable curvature between negative and zero 
o Variable curvature between positive and zero 
o Variable curvature between negative and positive 

• Architectural paneling approaches (Set B): 
o Contouring 
o Euclidean Spheres 
o Rectangular Extrusion 
o Cube Marching 
o Tangent Plane Intersection 

• Expected achievements (Set C): 
o All or part of the panels are planar (non-triangular panels) 
o All or part of the panels are regular (equilateral) 
o All or part of the panels are identical 

Propositions will be derived using the above sets as follows: For example, "When paneling 
approach B is used on a surface with curvature type A, achievement C is valid." To test the 
propositions, paneling approaches were applied to various surface types using drawing, 
modeling, and coding tools. The selected surface types exemplify the curvature classes 
mentioned in the propositions (sphere, hyperbolic paraboloid, hyperboloid, ellipsoid, 
cylinder, etc.). Following the drawings, panels created on these surfaces were analyzed for 
flatness, equality, or equilateral characteristics. The analysis resulted in conclusions 
regarding the selected paneling approaches. Instead of seeking generalizations that prove 
the results are correct under all conditions, the aim was to approach the closest possible truth 
based on the available data. Particularly, making generalizations about paneling methods on 
free-form surfaces with variable curvature between negative and positive poses challenges. 
Hence, the principle of falsifiability was adopted. The falsifiability of comparisons depends 
on demonstrating that a conclusion reached in one proposition is not valid for another 
surface with the same curvature type. The resulting conclusions will form an evolving table 
updated with new propositions and invalidated propositions. This article presents the initial 
phase of such a table. 

RESULTS AND FUTURE WORK 

The results of this article will be examined in three sections. The current state of the table 
obtained from experiments will be interpreted first. Subsequently, the conclusions reached 
with each paneling approach will be presented, followed by a general assessment of the 
prospects for further research. When experiments were conducted on surfaces with different 
curvatures using various paneling attempts and evaluated against defined criteria, the 
following conclusions were reached (Table 2): 
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Table 2. Application of surface paneling approaches to different curvatures 

• Paneling approaches generally apply to surfaces with regular zero curvature. This 
result is unsurprising because surfaces with regular zero curvature can be unfolded 
as flat and are easier to manufacture from planar materials due to their geometric 
properties. 

• Covering surfaces with variable curvature with identical panels is often impractical. 
For instance, the Euclidean spheres approach can ensure that some panels are 
equilateral and equal due to their geometric properties, but after a certain step, it 
becomes impossible to adapt the paneling to variable curvatures. 

• Further research is needed into the outcomes of the cube marching approach on 
different surfaces. This approach suggests potential by considering the entire surface 
as a whole and progressing by partitioning, thereby leading to more panel varieties 
as curvature increases. This method has its own literature and research area in 
computer graphics rather than architectural paneling. Architectural paneling studies 
should benefit more from this neighboring field. 

• Tangent plane intersection and quad extension can be used to obtain planar panels 
when desired. Obtaining planar panels is a fundamental expectation of this research 
area. Both paneling approaches typically yield planar panel results due to their 
geometric properties, but they may not meet other criteria. 

• By experimenting with several approaches concurrently on free-form (variable 
curvature) surfaces, new propositions, and tables can be derived. For example, using 
the tangent planes approach can result in planar panels while ensuring some panels 
are identical by partially using Euclidean spheres for selecting the points. 

• The table can be expanded with new propositions and achievements. For example, 
evaluating how closely the obtained panels match the source surface could be 
considered another achievement. 
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The comparison presented here serves as a beginning for a study that could develop much 
further. Considering the diversity of architectural surfaces and the variety of tools and 
methods used for paneling, the resulting comparison table is a beginning that supports 
asking more questions. As Pottmann et al. (2007) noted, solving all issues related to the 
applicability of free-form surfaces is not merely about geometry knowledge. However, a good 
understanding of geometry should be considered an important step for such applications. 

When examining the results of the comparison, it is evident that no surface paneling 
approach can provide the most suitable result on all types of surfaces. Each approach 
responds to different design criteria in different ways. This situation parallels advanced 
paneling algorithms reviewed in the literature beyond the selected paneling approaches. The 
diversity encompassed by surface paneling as a design-research field can be expanded to 
include other surface types, paneling approaches, and algorithms. It can be enriched with the 
participation of other achievements such as material and time optimization, beyond the 
states of being flat, equilateral, or equal. The result obtained from applying a specific 
paneling approach depends not only on surface curvature but also on how the surface is 
created and how the paneling approach is applied. 

To prevent complex geometric operations from becoming pattern catalogs, their purposes, 
meanings, and contributions to design must be questioned. Interdisciplinary subjects like 
architectural paneling should be subjects that architects must be knowledgeable and 
opinionated about, rather than just services demanded like engineering solutions. In-depth 
examinations and decision-making processes, reduced to specific physical achievements, 
can only be made meaningful by architects. This can only be achieved with a valid and up-
to-date understanding of architectural geometry. The continuity of architecture education's 
sensitive relationship with mathematics and geometry depends on developing 
contemporary architectural geometry and mathematics education in parallel with design 
studios. The path opened by young architects over the past decade can guide new 
generations by leading new syntheses. 
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